34 research outputs found

    Electronic structure of the iron-based superconductor LaOFeP

    Full text link
    The recent discovery of superconductivity in the so-called iron-oxypnictide family of compounds has generated intense interest. The layered crystal structure with transition metal ions in planar square lattice form and the discovery of spin-density-wave order near 130 K seem to hint at a strong similarity with the copper oxide superconductors. A burning current issue is the nature of the ground state of the parent compounds. Two distinct classes of theories have been put forward depending on the underlying band structures: local moment antiferromagnetic ground state for strong coupling approach and itinerant ground state for weak coupling approach. The local moment magnetism approach stresses on-site correlations and proximity to a Mott insulating state and thus the resemblance to cuprates; while the latter approach emphasizes the itinerant electron physics and the interplay between the competing ferromagnetic and antiferromagnetic fluctuations. Such a controversy is partly due to the lack of conclusive experimental information on the electronic structures. Here we report the first angle-resolved photoemission spectroscopy (ARPES) investigation of LaOFeP (Tc = 5.9 K), the first reported iron-based superconductor. Our results favor the itinerant ground state, albeit with band renormalization. In addition, our data reveal important differences between these and copper based superconductors.Comment: 17 pages, 4 figure

    "Organizational knowledge in the making: The construction of Fiat Melfi's integrated factory"

    No full text

    "Organizational knowledge in the making: The construction of Fiat Melfi's integrated factory"

    No full text

    "Technology and the courtroom: implications for organizational knowledge"

    No full text

    "Technology and the courtroom: implications for organizational knowledge"

    No full text
    corecore